diff options
| author | nasr <nsrddyn@gmail.com> | 2025-11-27 19:30:44 +0100 |
|---|---|---|
| committer | nasr <nsrddyn@gmail.com> | 2025-11-27 19:30:44 +0100 |
| commit | 356d86e2a9ca4145db17cbe8e5ee3e671239075f (patch) | |
| tree | c31f143afd5e562072869c21d14e81d5377d697c /src/Ops/Prime.scala | |
| parent | 5c90505fe7b6566049bead5e36a5e3f73d844413 (diff) | |
refactor: refactored folder structures and packaging for better clarity
Diffstat (limited to 'src/Ops/Prime.scala')
| -rw-r--r-- | src/Ops/Prime.scala | 138 |
1 files changed, 0 insertions, 138 deletions
diff --git a/src/Ops/Prime.scala b/src/Ops/Prime.scala deleted file mode 100644 index bd93ee1..0000000 --- a/src/Ops/Prime.scala +++ /dev/null @@ -1,138 +0,0 @@ -package com.nsrddyn.ops -import com.nsrddyn.tools.Benchmark -import scala.util.hashing -import scala.util.hashing.MurmurHash3 -import com.nsrddyn.Traits.* -import scala.math._ -import scala.collection.immutable.ListSet -import scala.collection.mutable.ArrayBuffer - - -class Prime() { - - /* - * Calculate all primes up to limit - * This should stress the ALU in someway, - * doing this in a predictable manner, - * will hopefully keep the cpu pipeline busy - * and that way stress the branch predictor - * - * math.sqrt(n) => a prime number has 2 factors, one of the factors - * of the prime numbers has to be smaller then n - * after that we check if the number is whole number and thereby checking if its a prime - * - */ - - - /* - * TODO: I did the countrary of what i wanted to accieve with the is prime function - * We want the function to be less optimized so that the CPU has more work == more stress - */ - - - def isPrime(n: Int): Boolean = { - if n <= 1 then false - else !(2 to math.sqrt(n).toInt).exists(i => n % i == 0) - - - } - - def run(n: Int, result: Boolean): Unit = { - - for i <- 0 to n do if isPrime(i) == result then println("true") else println("false") - } - - -} - - - - -class PrimeRunner { - - - def run(threads: Int): Unit = { - - val pr = new Prime() - val br = new Benchmark() - - /* - * test cases - * - * 7919 true - * 2147483647 false - */ - - val time = pr.run(7919, true) - println(time) - - } -} - - -class Hash { - - def run(word: String, loopSize: Int): Unit = { - - /* TODO: implement ALU friendly, so high speed hashing - * to continuously loop over voor stressing - * ALU - * - * While looking for hashing algorithmes to implement I stumbled on: - * https://scala-lang.org/api/3.x/scala/util/hashing/MurmurHash3$.html - * - * which is an implemntation of **smasher** http://github.com/aappleby/smhasher - * the exact type of hashing algorithm I was looking for - * - * In the scala description they state: "This algorithm is designed to generate - * well-distributed non-cryptographic hashes. It is designed to hash data in 32 bit chunks (ints). " - * - * (ints) -> ALU - * - */ - - for i <- 0 to loopSize do MurmurHash3.stringHash(word) - - } -} - -class CholeskyDecomposition { - - /* - * Floating point operation to stress the cpu - * Calculate the number of KFLOPS / FLOPS - * implementation of the Cholesky decomposition - * More information on the Cholesky decomposition at: - * https://en.wikipedia.org/wiki/Cholesky_decomposition - * - * Linpack uses the cholesky decomposition - * https://www.netlib.org/linpack/ - * - * https://www.geeksforgeeks.org/dsa/cholesky-decomposition-matrix-decomposition/ - * - * The Cholesky decomposition maps matrix A into the product of A = L ยท LH where L is the lower triangular matrix and LH is the transposed, - * complex conjugate or Hermitian, and therefore of upper triangular form (Fig. 13.6). - * This is true because of the special case of A being a square, conjugate symmetric matrix. - */ - - def run(matrix: Vector[Vector[Int]]): Unit = { - - val size: Int = matrix.size - val lower: ArrayBuffer[ArrayBuffer[Int]] = ArrayBuffer[ArrayBuffer[Int]]() - - for - i <- 0 to size - j <- 0 until i - do - if i == j then lower(i)(j) = getSquaredSummation(lower, i, j, matrix) else lower(j)(j) = getReversedSummation(lower, i, j, matrix) - - } - - private def getReversedSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = { - math.sqrt(matrix(j)(j) - (0 until j).map { k => lower(i)(k) * lower(j)(k) }.sum).toInt - } - private def getSquaredSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = { - ((matrix(i)(j) - (0 until j).map { k => math.pow(lower(j)(k), 2)}.sum) / lower(j)(j)).toInt - } -} - |
