package com.nsrddyn.fpu import scala.math._ import scala.collection.immutable.ListSet import scala.collection.mutable.ArrayBuffer class CholeskyDecomposition { /* * Floating point operation to stress the cpu * Calculate the number of KFLOPS / FLOPS * implementation of the Cholesky decomposition * More information on the Cholesky decomposition at: * https://en.wikipedia.org/wiki/Cholesky_decomposition * * Linpack uses the cholesky decomposition * https://www.netlib.org/linpack/ * * https://www.geeksforgeeks.org/dsa/cholesky-decomposition-matrix-decomposition/ * * The Cholesky decomposition maps matrix A into the product of A = L ยท LH where L is the lower triangular matrix and LH is the transposed, * complex conjugate or Hermitian, and therefore of upper triangular form (Fig. 13.6). * This is true because of the special case of A being a square, conjugate symmetric matrix. */ def run(matrix: Vector[Vector[Int]]): Unit = { val size: Int = matrix.size val lower: ArrayBuffer[ArrayBuffer[Int]] = ArrayBuffer[ArrayBuffer[Int]]() for i <- 0 to size j <- 0 until i do if i == j then lower(i)(j) = getSquaredSummation(lower, i, j, matrix) else lower(j)(j) = getReversedSummation(lower, i, j, matrix) } private def getReversedSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = { math.sqrt(matrix(j)(j) - (0 until j).map { k => lower(i)(k) * lower(j)(k) }.sum).toInt } private def getSquaredSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = { ((matrix(i)(j) - (0 until j).map { k => math.pow(lower(j)(k), 2)}.sum) / lower(j)(j)).toInt } }