package com.nsrddyn.ops import com.nsrddyn.tools.Benchmark import scala.util.hashing import scala.util.hashing.MurmurHash3 import com.nsrddyn.Traits.* import scala.math._ import scala.collection.immutable.ListSet import scala.collection.mutable.ArrayBuffer class Prime() { /* * Calculate all primes up to limit * This should stress the ALU in someway, * doing this in a predictable manner, * will hopefully keep the cpu pipeline busy * and that way stress the branch predictor * * math.sqrt(n) => a prime number has 2 factors, one of the factors * of the prime numbers has to be smaller then n * after that we check if the number is whole number and thereby checking if its a prime * */ /* * TODO: I did the countrary of what i wanted to accieve with the is prime function * We want the function to be less optimized so that the CPU has more work == more stress */ def isPrime(n: Int): Boolean = { if n <= 1 then false else !(2 to math.sqrt(n).toInt).exists(i => n % i == 0) } def run(n: Int, result: Boolean): Unit = { for i <- 0 to n do if isPrime(i) == result then println("true") else println("false") } } class PrimeRunner { def run(threads: Int): Unit = { val pr = new Prime() val br = new Benchmark() /* * test cases * * 7919 true * 2147483647 false */ val time = pr.run(7919, true) println(time) } } class Hash { def run(word: String, loopSize: Int): Unit = { /* TODO: implement ALU friendly, so high speed hashing * to continuously loop over voor stressing * ALU * * While looking for hashing algorithmes to implement I stumbled on: * https://scala-lang.org/api/3.x/scala/util/hashing/MurmurHash3$.html * * which is an implemntation of **smasher** http://github.com/aappleby/smhasher * the exact type of hashing algorithm I was looking for * * In the scala description they state: "This algorithm is designed to generate * well-distributed non-cryptographic hashes. It is designed to hash data in 32 bit chunks (ints). " * * (ints) -> ALU * */ for i <- 0 to loopSize do MurmurHash3.stringHash(word) } } class CholeskyDecomposition { /* * Floating point operation to stress the cpu * Calculate the number of KFLOPS / FLOPS * implementation of the Cholesky decomposition * More information on the Cholesky decomposition at: * https://en.wikipedia.org/wiki/Cholesky_decomposition * * Linpack uses the cholesky decomposition * https://www.netlib.org/linpack/ * * https://www.geeksforgeeks.org/dsa/cholesky-decomposition-matrix-decomposition/ * * The Cholesky decomposition maps matrix A into the product of A = L ยท LH where L is the lower triangular matrix and LH is the transposed, * complex conjugate or Hermitian, and therefore of upper triangular form (Fig. 13.6). * This is true because of the special case of A being a square, conjugate symmetric matrix. */ def run(matrix: Vector[Vector[Int]]): Unit = { val size: Int = matrix.size val lower: ArrayBuffer[ArrayBuffer[Int]] = ArrayBuffer[ArrayBuffer[Int]]() for i <- 0 to size j <- 0 until i do if i == j then lower(i)(j) = getSquaredSummation(lower, i, j, matrix) else lower(j)(j) = getReversedSummation(lower, i, j, matrix) } private def getReversedSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = { math.sqrt(matrix(j)(j) - (0 until j).map { k => lower(i)(k) * lower(j)(k) }.sum).toInt } private def getSquaredSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = { ((matrix(i)(j) - (0 until j).map { k => math.pow(lower(j)(k), 2)}.sum) / lower(j)(j)).toInt } }