From 409b76a88e589cbd7a8dfd9d0aad8152bb00d0bb Mon Sep 17 00:00:00 2001 From: nasr Date: Thu, 20 Nov 2025 21:43:16 +0100 Subject: feature: implemented some basic benchmarking logic & enum for pass and test --- src/main/scala/com/nsrddyn/ALU/Prime.scala | 41 ++++++++++++++++++++++++++++++ 1 file changed, 41 insertions(+) create mode 100644 src/main/scala/com/nsrddyn/ALU/Prime.scala (limited to 'src/main/scala/com/nsrddyn/ALU/Prime.scala') diff --git a/src/main/scala/com/nsrddyn/ALU/Prime.scala b/src/main/scala/com/nsrddyn/ALU/Prime.scala new file mode 100644 index 0000000..343dcee --- /dev/null +++ b/src/main/scala/com/nsrddyn/ALU/Prime.scala @@ -0,0 +1,41 @@ +package com.nsrddyn.alu + + +import com.nsrddyn.tools.Benchmark + +class Prime() extends Benchmark { + + /* + * Calculate all primes up to limit + * This should stress the ALU in someway, + * doing this in a predictable manner, + * will hopefully keep the cpu pipeline busy + * and that way stress the branch predictor + * + * math.sqrt(n) => a prime number has 2 factors, one of the factors + * of the prime numbers has to be smaller then n + * after that we check if the number is whole number and thereby checking if its a prime + * + */ + + + /* + * TODO: I did the countrary of what i wanted to accieve with the is prime function + * We want the function to be less optimized so that the CPU has more work == more stress + */ + + + def isPrime(n: Int): Boolean = { + if n <= 1 then false + else !(2 to math.sqrt(n).toInt).exists(i => n % i == 0) + } + + def run(n: Int, result: Boolean): Unit = { + + for i <- 0 to n do if isPrime(i) == result then println("true") else println("false") + + } + + +} + -- cgit v1.2.3-70-g09d2