diff options
Diffstat (limited to 'src/main/scala/com/nsrddyn/FPU/CholeskyDecomposition.scala')
| -rw-r--r-- | src/main/scala/com/nsrddyn/FPU/CholeskyDecomposition.scala | 46 |
1 files changed, 0 insertions, 46 deletions
diff --git a/src/main/scala/com/nsrddyn/FPU/CholeskyDecomposition.scala b/src/main/scala/com/nsrddyn/FPU/CholeskyDecomposition.scala deleted file mode 100644 index 895473a..0000000 --- a/src/main/scala/com/nsrddyn/FPU/CholeskyDecomposition.scala +++ /dev/null @@ -1,46 +0,0 @@ -package com.nsrddyn.fpu - -import scala.math._ -import scala.collection.immutable.ListSet -import scala.collection.mutable.ArrayBuffer - -class CholeskyDecomposition { - - /* - * Floating point operation to stress the cpu - * Calculate the number of KFLOPS / FLOPS - * implementation of the Cholesky decomposition - * More information on the Cholesky decomposition at: - * https://en.wikipedia.org/wiki/Cholesky_decomposition - * - * Linpack uses the cholesky decomposition - * https://www.netlib.org/linpack/ - * - * https://www.geeksforgeeks.org/dsa/cholesky-decomposition-matrix-decomposition/ - * - * The Cholesky decomposition maps matrix A into the product of A = L ยท LH where L is the lower triangular matrix and LH is the transposed, - * complex conjugate or Hermitian, and therefore of upper triangular form (Fig. 13.6). - * This is true because of the special case of A being a square, conjugate symmetric matrix. - */ - - def run(matrix: Vector[Vector[Int]]): Unit = { - - val size: Int = matrix.size - val lower: ArrayBuffer[ArrayBuffer[Int]] = ArrayBuffer[ArrayBuffer[Int]]() - - for - i <- 0 to size - j <- 0 until i - do - if i == j then lower(i)(j) = getSquaredSummation(lower, i, j, matrix) else lower(j)(j) = getReversedSummation(lower, i, j, matrix) - - } - - private def getReversedSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = { - math.sqrt(matrix(j)(j) - (0 until j).map { k => lower(i)(k) * lower(j)(k) }.sum).toInt - } - private def getSquaredSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = { - ((matrix(i)(j) - (0 until j).map { k => math.pow(lower(j)(k), 2)}.sum) / lower(j)(j)).toInt - } -} - |
