summaryrefslogtreecommitdiff
path: root/src/Ops
diff options
context:
space:
mode:
Diffstat (limited to 'src/Ops')
-rw-r--r--src/Ops/Prime.scala138
1 files changed, 138 insertions, 0 deletions
diff --git a/src/Ops/Prime.scala b/src/Ops/Prime.scala
new file mode 100644
index 0000000..bd93ee1
--- /dev/null
+++ b/src/Ops/Prime.scala
@@ -0,0 +1,138 @@
+package com.nsrddyn.ops
+import com.nsrddyn.tools.Benchmark
+import scala.util.hashing
+import scala.util.hashing.MurmurHash3
+import com.nsrddyn.Traits.*
+import scala.math._
+import scala.collection.immutable.ListSet
+import scala.collection.mutable.ArrayBuffer
+
+
+class Prime() {
+
+ /*
+ * Calculate all primes up to limit
+ * This should stress the ALU in someway,
+ * doing this in a predictable manner,
+ * will hopefully keep the cpu pipeline busy
+ * and that way stress the branch predictor
+ *
+ * math.sqrt(n) => a prime number has 2 factors, one of the factors
+ * of the prime numbers has to be smaller then n
+ * after that we check if the number is whole number and thereby checking if its a prime
+ *
+ */
+
+
+ /*
+ * TODO: I did the countrary of what i wanted to accieve with the is prime function
+ * We want the function to be less optimized so that the CPU has more work == more stress
+ */
+
+
+ def isPrime(n: Int): Boolean = {
+ if n <= 1 then false
+ else !(2 to math.sqrt(n).toInt).exists(i => n % i == 0)
+
+
+ }
+
+ def run(n: Int, result: Boolean): Unit = {
+
+ for i <- 0 to n do if isPrime(i) == result then println("true") else println("false")
+ }
+
+
+}
+
+
+
+
+class PrimeRunner {
+
+
+ def run(threads: Int): Unit = {
+
+ val pr = new Prime()
+ val br = new Benchmark()
+
+ /*
+ * test cases
+ *
+ * 7919 true
+ * 2147483647 false
+ */
+
+ val time = pr.run(7919, true)
+ println(time)
+
+ }
+}
+
+
+class Hash {
+
+ def run(word: String, loopSize: Int): Unit = {
+
+ /* TODO: implement ALU friendly, so high speed hashing
+ * to continuously loop over voor stressing
+ * ALU
+ *
+ * While looking for hashing algorithmes to implement I stumbled on:
+ * https://scala-lang.org/api/3.x/scala/util/hashing/MurmurHash3$.html
+ *
+ * which is an implemntation of **smasher** http://github.com/aappleby/smhasher
+ * the exact type of hashing algorithm I was looking for
+ *
+ * In the scala description they state: "This algorithm is designed to generate
+ * well-distributed non-cryptographic hashes. It is designed to hash data in 32 bit chunks (ints). "
+ *
+ * (ints) -> ALU
+ *
+ */
+
+ for i <- 0 to loopSize do MurmurHash3.stringHash(word)
+
+ }
+}
+
+class CholeskyDecomposition {
+
+ /*
+ * Floating point operation to stress the cpu
+ * Calculate the number of KFLOPS / FLOPS
+ * implementation of the Cholesky decomposition
+ * More information on the Cholesky decomposition at:
+ * https://en.wikipedia.org/wiki/Cholesky_decomposition
+ *
+ * Linpack uses the cholesky decomposition
+ * https://www.netlib.org/linpack/
+ *
+ * https://www.geeksforgeeks.org/dsa/cholesky-decomposition-matrix-decomposition/
+ *
+ * The Cholesky decomposition maps matrix A into the product of A = L ยท LH where L is the lower triangular matrix and LH is the transposed,
+ * complex conjugate or Hermitian, and therefore of upper triangular form (Fig. 13.6).
+ * This is true because of the special case of A being a square, conjugate symmetric matrix.
+ */
+
+ def run(matrix: Vector[Vector[Int]]): Unit = {
+
+ val size: Int = matrix.size
+ val lower: ArrayBuffer[ArrayBuffer[Int]] = ArrayBuffer[ArrayBuffer[Int]]()
+
+ for
+ i <- 0 to size
+ j <- 0 until i
+ do
+ if i == j then lower(i)(j) = getSquaredSummation(lower, i, j, matrix) else lower(j)(j) = getReversedSummation(lower, i, j, matrix)
+
+ }
+
+ private def getReversedSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
+ math.sqrt(matrix(j)(j) - (0 until j).map { k => lower(i)(k) * lower(j)(k) }.sum).toInt
+ }
+ private def getSquaredSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
+ ((matrix(i)(j) - (0 until j).map { k => math.pow(lower(j)(k), 2)}.sum) / lower(j)(j)).toInt
+ }
+}
+