summaryrefslogtreecommitdiff
path: root/src/Ops
diff options
context:
space:
mode:
Diffstat (limited to 'src/Ops')
-rw-r--r--src/Ops/Prime.scala138
1 files changed, 0 insertions, 138 deletions
diff --git a/src/Ops/Prime.scala b/src/Ops/Prime.scala
deleted file mode 100644
index bd93ee1..0000000
--- a/src/Ops/Prime.scala
+++ /dev/null
@@ -1,138 +0,0 @@
-package com.nsrddyn.ops
-import com.nsrddyn.tools.Benchmark
-import scala.util.hashing
-import scala.util.hashing.MurmurHash3
-import com.nsrddyn.Traits.*
-import scala.math._
-import scala.collection.immutable.ListSet
-import scala.collection.mutable.ArrayBuffer
-
-
-class Prime() {
-
- /*
- * Calculate all primes up to limit
- * This should stress the ALU in someway,
- * doing this in a predictable manner,
- * will hopefully keep the cpu pipeline busy
- * and that way stress the branch predictor
- *
- * math.sqrt(n) => a prime number has 2 factors, one of the factors
- * of the prime numbers has to be smaller then n
- * after that we check if the number is whole number and thereby checking if its a prime
- *
- */
-
-
- /*
- * TODO: I did the countrary of what i wanted to accieve with the is prime function
- * We want the function to be less optimized so that the CPU has more work == more stress
- */
-
-
- def isPrime(n: Int): Boolean = {
- if n <= 1 then false
- else !(2 to math.sqrt(n).toInt).exists(i => n % i == 0)
-
-
- }
-
- def run(n: Int, result: Boolean): Unit = {
-
- for i <- 0 to n do if isPrime(i) == result then println("true") else println("false")
- }
-
-
-}
-
-
-
-
-class PrimeRunner {
-
-
- def run(threads: Int): Unit = {
-
- val pr = new Prime()
- val br = new Benchmark()
-
- /*
- * test cases
- *
- * 7919 true
- * 2147483647 false
- */
-
- val time = pr.run(7919, true)
- println(time)
-
- }
-}
-
-
-class Hash {
-
- def run(word: String, loopSize: Int): Unit = {
-
- /* TODO: implement ALU friendly, so high speed hashing
- * to continuously loop over voor stressing
- * ALU
- *
- * While looking for hashing algorithmes to implement I stumbled on:
- * https://scala-lang.org/api/3.x/scala/util/hashing/MurmurHash3$.html
- *
- * which is an implemntation of **smasher** http://github.com/aappleby/smhasher
- * the exact type of hashing algorithm I was looking for
- *
- * In the scala description they state: "This algorithm is designed to generate
- * well-distributed non-cryptographic hashes. It is designed to hash data in 32 bit chunks (ints). "
- *
- * (ints) -> ALU
- *
- */
-
- for i <- 0 to loopSize do MurmurHash3.stringHash(word)
-
- }
-}
-
-class CholeskyDecomposition {
-
- /*
- * Floating point operation to stress the cpu
- * Calculate the number of KFLOPS / FLOPS
- * implementation of the Cholesky decomposition
- * More information on the Cholesky decomposition at:
- * https://en.wikipedia.org/wiki/Cholesky_decomposition
- *
- * Linpack uses the cholesky decomposition
- * https://www.netlib.org/linpack/
- *
- * https://www.geeksforgeeks.org/dsa/cholesky-decomposition-matrix-decomposition/
- *
- * The Cholesky decomposition maps matrix A into the product of A = L ยท LH where L is the lower triangular matrix and LH is the transposed,
- * complex conjugate or Hermitian, and therefore of upper triangular form (Fig. 13.6).
- * This is true because of the special case of A being a square, conjugate symmetric matrix.
- */
-
- def run(matrix: Vector[Vector[Int]]): Unit = {
-
- val size: Int = matrix.size
- val lower: ArrayBuffer[ArrayBuffer[Int]] = ArrayBuffer[ArrayBuffer[Int]]()
-
- for
- i <- 0 to size
- j <- 0 until i
- do
- if i == j then lower(i)(j) = getSquaredSummation(lower, i, j, matrix) else lower(j)(j) = getReversedSummation(lower, i, j, matrix)
-
- }
-
- private def getReversedSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
- math.sqrt(matrix(j)(j) - (0 until j).map { k => lower(i)(k) * lower(j)(k) }.sum).toInt
- }
- private def getSquaredSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
- ((matrix(i)(j) - (0 until j).map { k => math.pow(lower(j)(k), 2)}.sum) / lower(j)(j)).toInt
- }
-}
-