diff options
Diffstat (limited to 'src/Ops/Prime.scala')
| -rw-r--r-- | src/Ops/Prime.scala | 138 |
1 files changed, 138 insertions, 0 deletions
diff --git a/src/Ops/Prime.scala b/src/Ops/Prime.scala new file mode 100644 index 0000000..bd93ee1 --- /dev/null +++ b/src/Ops/Prime.scala @@ -0,0 +1,138 @@ +package com.nsrddyn.ops +import com.nsrddyn.tools.Benchmark +import scala.util.hashing +import scala.util.hashing.MurmurHash3 +import com.nsrddyn.Traits.* +import scala.math._ +import scala.collection.immutable.ListSet +import scala.collection.mutable.ArrayBuffer + + +class Prime() { + + /* + * Calculate all primes up to limit + * This should stress the ALU in someway, + * doing this in a predictable manner, + * will hopefully keep the cpu pipeline busy + * and that way stress the branch predictor + * + * math.sqrt(n) => a prime number has 2 factors, one of the factors + * of the prime numbers has to be smaller then n + * after that we check if the number is whole number and thereby checking if its a prime + * + */ + + + /* + * TODO: I did the countrary of what i wanted to accieve with the is prime function + * We want the function to be less optimized so that the CPU has more work == more stress + */ + + + def isPrime(n: Int): Boolean = { + if n <= 1 then false + else !(2 to math.sqrt(n).toInt).exists(i => n % i == 0) + + + } + + def run(n: Int, result: Boolean): Unit = { + + for i <- 0 to n do if isPrime(i) == result then println("true") else println("false") + } + + +} + + + + +class PrimeRunner { + + + def run(threads: Int): Unit = { + + val pr = new Prime() + val br = new Benchmark() + + /* + * test cases + * + * 7919 true + * 2147483647 false + */ + + val time = pr.run(7919, true) + println(time) + + } +} + + +class Hash { + + def run(word: String, loopSize: Int): Unit = { + + /* TODO: implement ALU friendly, so high speed hashing + * to continuously loop over voor stressing + * ALU + * + * While looking for hashing algorithmes to implement I stumbled on: + * https://scala-lang.org/api/3.x/scala/util/hashing/MurmurHash3$.html + * + * which is an implemntation of **smasher** http://github.com/aappleby/smhasher + * the exact type of hashing algorithm I was looking for + * + * In the scala description they state: "This algorithm is designed to generate + * well-distributed non-cryptographic hashes. It is designed to hash data in 32 bit chunks (ints). " + * + * (ints) -> ALU + * + */ + + for i <- 0 to loopSize do MurmurHash3.stringHash(word) + + } +} + +class CholeskyDecomposition { + + /* + * Floating point operation to stress the cpu + * Calculate the number of KFLOPS / FLOPS + * implementation of the Cholesky decomposition + * More information on the Cholesky decomposition at: + * https://en.wikipedia.org/wiki/Cholesky_decomposition + * + * Linpack uses the cholesky decomposition + * https://www.netlib.org/linpack/ + * + * https://www.geeksforgeeks.org/dsa/cholesky-decomposition-matrix-decomposition/ + * + * The Cholesky decomposition maps matrix A into the product of A = L ยท LH where L is the lower triangular matrix and LH is the transposed, + * complex conjugate or Hermitian, and therefore of upper triangular form (Fig. 13.6). + * This is true because of the special case of A being a square, conjugate symmetric matrix. + */ + + def run(matrix: Vector[Vector[Int]]): Unit = { + + val size: Int = matrix.size + val lower: ArrayBuffer[ArrayBuffer[Int]] = ArrayBuffer[ArrayBuffer[Int]]() + + for + i <- 0 to size + j <- 0 until i + do + if i == j then lower(i)(j) = getSquaredSummation(lower, i, j, matrix) else lower(j)(j) = getReversedSummation(lower, i, j, matrix) + + } + + private def getReversedSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = { + math.sqrt(matrix(j)(j) - (0 until j).map { k => lower(i)(k) * lower(j)(k) }.sum).toInt + } + private def getSquaredSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = { + ((matrix(i)(j) - (0 until j).map { k => math.pow(lower(j)(k), 2)}.sum) / lower(j)(j)).toInt + } +} + |
