mirror of
https://github.com/nasrlol/torque.git
synced 2025-11-27 23:09:21 +01:00
Compare commits
No commits in common. "e70ce01ce40d4e3fc86f887913ee1c7fa6ffb50e" and "b3a5e3305a7f479aea0851a07e95b80088dd45e4" have entirely different histories.
e70ce01ce4
...
b3a5e3305a
2
.gitignore
vendored
2
.gitignore
vendored
@ -10,6 +10,4 @@ hs_err_pid*
|
||||
.idea/
|
||||
*.iml
|
||||
.vscode/
|
||||
.scala-build/
|
||||
|
||||
project/metals.sbt
|
||||
|
||||
@ -4,4 +4,3 @@ name := "torque"
|
||||
organization := "com.nsrddyn"
|
||||
|
||||
libraryDependencies += "dev.zio" %% "zio" % "2.1.22"
|
||||
libraryDependencies += "org.scalatest" %% "scalatest" % "3.2.19" % Test
|
||||
|
||||
@ -1,6 +0,0 @@
|
||||
package com.nsrddyn.Enums
|
||||
|
||||
enum Status:
|
||||
case PASS
|
||||
case FAIL
|
||||
|
||||
@ -1,53 +0,0 @@
|
||||
package com.nsrddyn.fpu
|
||||
|
||||
import scala.math._
|
||||
import scala.collection.immutable.ListSet
|
||||
import scala.collection.mutable.ArrayBuffer
|
||||
|
||||
class CholeskyDecomposition {
|
||||
|
||||
/*
|
||||
* Floating point operation to stress the cpu
|
||||
* Calculate the number of KFLOPS / FLOPS
|
||||
* implementation of the Cholesky decomposition
|
||||
* More information on the Cholesky decomposition at:
|
||||
* https://en.wikipedia.org/wiki/Cholesky_decomposition
|
||||
*
|
||||
* Linpack uses the cholesky decomposition
|
||||
* https://www.netlib.org/linpack/
|
||||
*
|
||||
* https://www.geeksforgeeks.org/dsa/cholesky-decomposition-matrix-decomposition/
|
||||
*
|
||||
* The Cholesky decomposition maps matrix A into the product of A = L · LH where L is the lower triangular matrix and LH is the transposed,
|
||||
* complex conjugate or Hermitian, and therefore of upper triangular form (Fig. 13.6).
|
||||
* This is true because of the special case of A being a square, conjugate symmetric matrix.
|
||||
*/
|
||||
|
||||
def run(matrix: List[List[Int]]): Unit = {
|
||||
|
||||
val n: Int = matrix.size
|
||||
|
||||
// store the lower triangular matrix
|
||||
val lower = Vector[Vector[Int]]()
|
||||
|
||||
|
||||
for (i <- 0 until n)
|
||||
{
|
||||
for (j <- 0 until i)
|
||||
var sum: Double = 0
|
||||
|
||||
if j == i then
|
||||
sum += math.pow(lowerBuffer(i)(j), 2)
|
||||
|
||||
end if
|
||||
lower(i)(j) = (sqrt(matrix(i)(j))())
|
||||
|
||||
j += 1
|
||||
}
|
||||
i += 1
|
||||
}
|
||||
|
||||
def (matrix: Vector[Vector[Int]], index: int, jindex: int ): Int = if j == 1 then return math.pow(matrix(index)(jindex)) else
|
||||
|
||||
|
||||
}
|
||||
@ -1,6 +0,0 @@
|
||||
package com.nsrddyn.fpu
|
||||
|
||||
|
||||
class FPU {
|
||||
|
||||
}
|
||||
@ -1,5 +0,0 @@
|
||||
package com.nsrddyn.fpu
|
||||
|
||||
class Matrix {
|
||||
|
||||
}
|
||||
@ -1,23 +1,20 @@
|
||||
package com.nsrddyn
|
||||
|
||||
import com.nsrddyn.fpu.CholeskyDecomposition
|
||||
import com.nsrddyn.Tests.CholeskyDecompositionTest
|
||||
import java.time.Instant
|
||||
import com.nsrddyn.alu.*
|
||||
import com.nsrddyn.tools.Benchmark
|
||||
|
||||
object Torque {
|
||||
|
||||
println("hello world")
|
||||
import java.time.Instant
|
||||
|
||||
@main def main(args: String*): Unit =
|
||||
|
||||
@main def main(args: String*): Unit = {
|
||||
// ANSI ESCAPE CODE: clear screen
|
||||
println("\u001b[2J\u001b[H")
|
||||
println("--- TORQUE STRESS TESTING UTILITY ---")
|
||||
|
||||
var tester: CholeskyDecompositionTest = new CholeskyDecompositionTest
|
||||
println(tester.test())
|
||||
val now: Instant = Instant.now()
|
||||
println(now)
|
||||
|
||||
}
|
||||
}
|
||||
val pr = new Prime()
|
||||
|
||||
val intMax = 2147483647
|
||||
pr.run(intMax)
|
||||
}
|
||||
|
||||
@ -1,16 +0,0 @@
|
||||
package com.nsrddyn.Tests
|
||||
|
||||
import com.nsrddyn.fpu.CholeskyDecomposition
|
||||
import scala.collection.immutable.ListSet
|
||||
|
||||
class CholeskyDecompositionTest extends CholeskyDecomposition {
|
||||
|
||||
def test(): Unit = {
|
||||
|
||||
val cdp: CholeskyDecomposition = new CholeskyDecomposition
|
||||
val matrix: List[List[Int]] = List.empty[List[Int]]
|
||||
|
||||
println(cdp.run(matrix))
|
||||
|
||||
}
|
||||
}
|
||||
@ -1,29 +0,0 @@
|
||||
package com.nsrddyn.Test
|
||||
|
||||
import com.nsrddyn.alu.Prime
|
||||
import com.nsrddyn.tools.Benchmark
|
||||
|
||||
class PrimeTest extends Prime {
|
||||
|
||||
def runBasic(): Unit = {
|
||||
|
||||
val pr = new Prime()
|
||||
val br = new Benchmark()
|
||||
|
||||
/*
|
||||
* test cases
|
||||
*
|
||||
* 7919 true
|
||||
* 2147483647 false
|
||||
*/
|
||||
|
||||
val time = pr.run(7919, true)
|
||||
println(time)
|
||||
|
||||
}
|
||||
|
||||
def runExtreme(): Unit = println("running some very have stuff!")
|
||||
|
||||
|
||||
|
||||
}
|
||||
@ -1,17 +0,0 @@
|
||||
package com.nsrddyn.tools
|
||||
|
||||
class Benchmark {
|
||||
/*
|
||||
* Calculate the time between the start of the execution of the function and the end
|
||||
* */
|
||||
def measureTime(work: => Unit): Long = {
|
||||
|
||||
val start = System.nanoTime()
|
||||
work
|
||||
val end = System.nanoTime()
|
||||
end - start
|
||||
}
|
||||
|
||||
// TODO: map this to an actual precision value
|
||||
def measurePrecision(work: => Boolean, expectedResult: Boolean): Unit = if work == expectedResult then println(true) else println(false)
|
||||
}
|
||||
@ -1,4 +1,4 @@
|
||||
package com.nsrddyn.alu
|
||||
package com.nsrddyn
|
||||
|
||||
import scala.util.hashing
|
||||
|
||||
@ -1,9 +1,9 @@
|
||||
package com.nsrddyn.alu
|
||||
package com.nsrddyn
|
||||
|
||||
|
||||
import com.nsrddyn.tools.Benchmark
|
||||
|
||||
class Prime() extends Benchmark {
|
||||
class Prime() {
|
||||
|
||||
|
||||
/*
|
||||
* Calculate all primes up to limit
|
||||
@ -18,25 +18,11 @@ class Prime() extends Benchmark {
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* TODO: I did the countrary of what i wanted to accieve with the is prime function
|
||||
* We want the function to be less optimized so that the CPU has more work == more stress
|
||||
*/
|
||||
|
||||
|
||||
def isPrime(n: Int): Boolean = {
|
||||
if n <= 1 then false
|
||||
else !(2 to math.sqrt(n).toInt).exists(i => n % i == 0)
|
||||
|
||||
|
||||
}
|
||||
|
||||
def run(n: Int, result: Boolean): Unit = {
|
||||
|
||||
for i <- 0 to n do if isPrime(i) == result then println("true") else println("false")
|
||||
}
|
||||
|
||||
|
||||
def run(n: Int): Unit = for i <- 0 to n do isPrime(i)
|
||||
}
|
||||
|
||||
12
src/main/scala/com/nsrddyn/cpu/Cpu.scala
Normal file
12
src/main/scala/com/nsrddyn/cpu/Cpu.scala
Normal file
@ -0,0 +1,12 @@
|
||||
package com.nsrddyn
|
||||
|
||||
/*
|
||||
* cpu object, only one instance of an object needed
|
||||
*/
|
||||
|
||||
object Cpu {
|
||||
|
||||
val name = ""
|
||||
|
||||
|
||||
}
|
||||
@ -0,0 +1,28 @@
|
||||
package com.nsrddyn
|
||||
|
||||
|
||||
class CholeskyDecomposition {
|
||||
|
||||
/*
|
||||
* Floating point operation to stress the cpu
|
||||
* Calculate the number of KFLOPS / FLOPS
|
||||
* implementation of the Cholesky decomposition
|
||||
* More information on the Cholesky decomposition at:
|
||||
* https://en.wikipedia.org/wiki/Cholesky_decomposition
|
||||
*
|
||||
* Linpack uses the cholesky decomposition
|
||||
* https://www.netlib.org/linpack/
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
def choleskyDecomposition(n: Int): Unit = {
|
||||
|
||||
for (w <- 0 to n) {
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
6
src/main/scala/com/nsrddyn/cpu/FPU/FPU.scala
Normal file
6
src/main/scala/com/nsrddyn/cpu/FPU/FPU.scala
Normal file
@ -0,0 +1,6 @@
|
||||
package com.nsrddyn
|
||||
|
||||
|
||||
class FPU {
|
||||
|
||||
}
|
||||
5
src/main/scala/com/nsrddyn/cpu/FPU/Matrix.scala
Normal file
5
src/main/scala/com/nsrddyn/cpu/FPU/Matrix.scala
Normal file
@ -0,0 +1,5 @@
|
||||
package com.nsrddyn
|
||||
|
||||
class Matrix {
|
||||
|
||||
}
|
||||
Loading…
Reference in New Issue
Block a user