feature(updatefeature(update): prime calculation method

finished the prime number calculation method,  added an example of it
calculating the max int number. stresses cpu usage to 100%, not heavy
yet. But we are stressing it in someway. next steps are to add
multithreading and different ways of performance measurments.
This commit is contained in:
Abdellah El Morabit 2025-11-17 23:57:36 +01:00
parent a66ec9fb87
commit 94e2465ded
2 changed files with 23 additions and 36 deletions

View File

@ -1,15 +1,20 @@
package com.nsrddyn
object Torque {
import com.nsrddyn
import java.time.Instant
@main def HelloWorld(args: String*): Unit =
println("--- TORQUE STRESS TESTING UTILITY")
val prime = new Prime()
@main def main(args: String*): Unit =
prime.run(3, 5)
// ANSI ESCAPE CODE: clear screen
println("\u001b[2J\u001b[H")
println("--- TORQUE STRESS TESTING UTILITY ---")
val now: Instant = Instant.now()
println(now)
val pr = new Prime(4)
val intMax = 2147483647
pr.run(intMax)
}

View File

@ -4,6 +4,7 @@ package com.nsrddyn
class Prime(threads: Int) {
/*
* Calculate all primes up to limit
* This should stress the ALU in someway,
@ -11,36 +12,17 @@ class Prime(threads: Int) {
* will hopefully keep the cpu pipeline busy
* and that way stress the branch predictor
*
* */
// TODO: bad implementation of scala, scala prefers functional programming which something I am not doing here
def run(n: Long): Unit = {
var iterator = 0
// TODO: run the isPrime checks
}
* math.sqrt(n) => a prime number has 2 factors, one of the factors
* of the prime numbers has to be smaller then n
* after that we check if the number is whole number and thereby checking if its a prime
*
*/
def isPrime(n: Int): Boolean = {
for
i <- 2 to 5
if isWholeNumber(n % i) == true then
true
false
// TODO: calculate if the number is a prime number
// TODO: fix errors
if n <= 1 then false
else !(2 to math.sqrt(n).toInt).exists(i => n % i == 0)
}
def isWholeNumber(n: Int | Float): Boolean = {
// TODO: calculate if the number is a whole number
}
def run(n: Int): Unit = for i <- 0 to n do isPrime(i)
}