mirror of
https://github.com/nasrlol/torque.git
synced 2025-11-27 23:09:21 +01:00
chore: file refactor, imported zio
next steps are running the threads multithreaded and measuring for errors
This commit is contained in:
parent
d6f99d058b
commit
5c90505fe7
@ -1,7 +1,6 @@
|
||||
scalaVersion := "3.7.4"
|
||||
version := "1.0"
|
||||
name := "torque"
|
||||
organization := "com.nsrddyn"
|
||||
|
||||
libraryDependencies += "dev.zio" %% "zio" % "2.1.22"
|
||||
libraryDependencies += "org.scalatest" %% "scalatest" % "3.2.19" % Test
|
||||
|
||||
@ -11,18 +11,20 @@ enum Status:
|
||||
case FAIL
|
||||
|
||||
|
||||
object Torque {
|
||||
object Torque extends ZIOAppDefault {
|
||||
|
||||
println("hello world")
|
||||
|
||||
@main def main(args: String*): Unit = {
|
||||
// ANSI ESCAPE CODE: clear screen
|
||||
println("\u001b[2J\u001b[H")
|
||||
@main def main(args: String*): Unit = { println("\u001b[2J\u001b[H")
|
||||
println("--- TORQUE STRESS TESTING UTILITY ---")
|
||||
|
||||
var tester: CholeskyDecompositionTest = new CholeskyDecompositionTest
|
||||
println(tester.test())
|
||||
|
||||
}
|
||||
|
||||
var p: Prime = new Prime
|
||||
p.run()
|
||||
|
||||
}
|
||||
|
||||
138
src/Ops/Prime.scala
Normal file
138
src/Ops/Prime.scala
Normal file
@ -0,0 +1,138 @@
|
||||
package com.nsrddyn.ops
|
||||
import com.nsrddyn.tools.Benchmark
|
||||
import scala.util.hashing
|
||||
import scala.util.hashing.MurmurHash3
|
||||
import com.nsrddyn.Traits.*
|
||||
import scala.math._
|
||||
import scala.collection.immutable.ListSet
|
||||
import scala.collection.mutable.ArrayBuffer
|
||||
|
||||
|
||||
class Prime() {
|
||||
|
||||
/*
|
||||
* Calculate all primes up to limit
|
||||
* This should stress the ALU in someway,
|
||||
* doing this in a predictable manner,
|
||||
* will hopefully keep the cpu pipeline busy
|
||||
* and that way stress the branch predictor
|
||||
*
|
||||
* math.sqrt(n) => a prime number has 2 factors, one of the factors
|
||||
* of the prime numbers has to be smaller then n
|
||||
* after that we check if the number is whole number and thereby checking if its a prime
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* TODO: I did the countrary of what i wanted to accieve with the is prime function
|
||||
* We want the function to be less optimized so that the CPU has more work == more stress
|
||||
*/
|
||||
|
||||
|
||||
def isPrime(n: Int): Boolean = {
|
||||
if n <= 1 then false
|
||||
else !(2 to math.sqrt(n).toInt).exists(i => n % i == 0)
|
||||
|
||||
|
||||
}
|
||||
|
||||
def run(n: Int, result: Boolean): Unit = {
|
||||
|
||||
for i <- 0 to n do if isPrime(i) == result then println("true") else println("false")
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
class PrimeRunner {
|
||||
|
||||
|
||||
def run(threads: Int): Unit = {
|
||||
|
||||
val pr = new Prime()
|
||||
val br = new Benchmark()
|
||||
|
||||
/*
|
||||
* test cases
|
||||
*
|
||||
* 7919 true
|
||||
* 2147483647 false
|
||||
*/
|
||||
|
||||
val time = pr.run(7919, true)
|
||||
println(time)
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class Hash {
|
||||
|
||||
def run(word: String, loopSize: Int): Unit = {
|
||||
|
||||
/* TODO: implement ALU friendly, so high speed hashing
|
||||
* to continuously loop over voor stressing
|
||||
* ALU
|
||||
*
|
||||
* While looking for hashing algorithmes to implement I stumbled on:
|
||||
* https://scala-lang.org/api/3.x/scala/util/hashing/MurmurHash3$.html
|
||||
*
|
||||
* which is an implemntation of **smasher** http://github.com/aappleby/smhasher
|
||||
* the exact type of hashing algorithm I was looking for
|
||||
*
|
||||
* In the scala description they state: "This algorithm is designed to generate
|
||||
* well-distributed non-cryptographic hashes. It is designed to hash data in 32 bit chunks (ints). "
|
||||
*
|
||||
* (ints) -> ALU
|
||||
*
|
||||
*/
|
||||
|
||||
for i <- 0 to loopSize do MurmurHash3.stringHash(word)
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
class CholeskyDecomposition {
|
||||
|
||||
/*
|
||||
* Floating point operation to stress the cpu
|
||||
* Calculate the number of KFLOPS / FLOPS
|
||||
* implementation of the Cholesky decomposition
|
||||
* More information on the Cholesky decomposition at:
|
||||
* https://en.wikipedia.org/wiki/Cholesky_decomposition
|
||||
*
|
||||
* Linpack uses the cholesky decomposition
|
||||
* https://www.netlib.org/linpack/
|
||||
*
|
||||
* https://www.geeksforgeeks.org/dsa/cholesky-decomposition-matrix-decomposition/
|
||||
*
|
||||
* The Cholesky decomposition maps matrix A into the product of A = L · LH where L is the lower triangular matrix and LH is the transposed,
|
||||
* complex conjugate or Hermitian, and therefore of upper triangular form (Fig. 13.6).
|
||||
* This is true because of the special case of A being a square, conjugate symmetric matrix.
|
||||
*/
|
||||
|
||||
def run(matrix: Vector[Vector[Int]]): Unit = {
|
||||
|
||||
val size: Int = matrix.size
|
||||
val lower: ArrayBuffer[ArrayBuffer[Int]] = ArrayBuffer[ArrayBuffer[Int]]()
|
||||
|
||||
for
|
||||
i <- 0 to size
|
||||
j <- 0 until i
|
||||
do
|
||||
if i == j then lower(i)(j) = getSquaredSummation(lower, i, j, matrix) else lower(j)(j) = getReversedSummation(lower, i, j, matrix)
|
||||
|
||||
}
|
||||
|
||||
private def getReversedSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
|
||||
math.sqrt(matrix(j)(j) - (0 until j).map { k => lower(i)(k) * lower(j)(k) }.sum).toInt
|
||||
}
|
||||
private def getSquaredSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
|
||||
((matrix(i)(j) - (0 until j).map { k => math.pow(lower(j)(k), 2)}.sum) / lower(j)(j)).toInt
|
||||
}
|
||||
}
|
||||
|
||||
@ -2,8 +2,17 @@ package com.nsrddyn.Tests
|
||||
|
||||
import com.nsrddyn.fpu.CholeskyDecomposition
|
||||
import scala.collection.immutable.ListSet
|
||||
import zio._
|
||||
|
||||
class CholeskyDecompositionTest extends CholeskyDecomposition {
|
||||
class TestsRunner extends ZIOAppDefault {
|
||||
|
||||
def run =
|
||||
println("Hello world")
|
||||
|
||||
|
||||
}
|
||||
|
||||
class CholeskyDecompositionTest {
|
||||
|
||||
def test(): Unit = {
|
||||
|
||||
@ -1,7 +1,5 @@
|
||||
package com.nsrddyn.Traits
|
||||
|
||||
import zio._
|
||||
|
||||
trait Workload {
|
||||
|
||||
def name: String
|
||||
@ -1,31 +0,0 @@
|
||||
package com.nsrddyn.alu
|
||||
|
||||
import scala.util.hashing
|
||||
|
||||
class Hash {
|
||||
|
||||
import scala.util.hashing.MurmurHash3
|
||||
|
||||
def run(word: String, loopSize: Int): Unit = {
|
||||
|
||||
/* TODO: implement ALU friendly, so high speed hashing
|
||||
* to continuously loop over voor stressing
|
||||
* ALU
|
||||
*
|
||||
* While looking for hashing algorithmes to implement I stumbled on:
|
||||
* https://scala-lang.org/api/3.x/scala/util/hashing/MurmurHash3$.html
|
||||
*
|
||||
* which is an implemntation of **smasher** http://github.com/aappleby/smhasher
|
||||
* the exact type of hashing algorithm I was looking for
|
||||
*
|
||||
* In the scala description they state: "This algorithm is designed to generate
|
||||
* well-distributed non-cryptographic hashes. It is designed to hash data in 32 bit chunks (ints). "
|
||||
*
|
||||
* (ints) -> ALU
|
||||
*
|
||||
*/
|
||||
|
||||
for i <- 0 to loopSize do MurmurHash3.stringHash(word)
|
||||
|
||||
}
|
||||
}
|
||||
@ -1,64 +0,0 @@
|
||||
package com.nsrddyn.alu
|
||||
import com.nsrddyn.alu.Prime
|
||||
import com.nsrddyn.tools.Benchmark
|
||||
import com.nsrddyn.test
|
||||
|
||||
class Prime() extends {
|
||||
|
||||
/*
|
||||
* Calculate all primes up to limit
|
||||
* This should stress the ALU in someway,
|
||||
* doing this in a predictable manner,
|
||||
* will hopefully keep the cpu pipeline busy
|
||||
* and that way stress the branch predictor
|
||||
*
|
||||
* math.sqrt(n) => a prime number has 2 factors, one of the factors
|
||||
* of the prime numbers has to be smaller then n
|
||||
* after that we check if the number is whole number and thereby checking if its a prime
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* TODO: I did the countrary of what i wanted to accieve with the is prime function
|
||||
* We want the function to be less optimized so that the CPU has more work == more stress
|
||||
*/
|
||||
|
||||
|
||||
def isPrime(n: Int): Boolean = {
|
||||
if n <= 1 then false
|
||||
else !(2 to math.sqrt(n).toInt).exists(i => n % i == 0)
|
||||
|
||||
|
||||
}
|
||||
|
||||
def run(n: Int, result: Boolean): Unit = {
|
||||
|
||||
for i <- 0 to n do if isPrime(i) == result then println("true") else println("false")
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
class PrimeRunner extends Workload {
|
||||
|
||||
def run(threads: Int): Unit = {
|
||||
|
||||
val pr = new Prime()
|
||||
val br = new Benchmark()
|
||||
|
||||
/*
|
||||
* test cases
|
||||
*
|
||||
* 7919 true
|
||||
* 2147483647 false
|
||||
*/
|
||||
|
||||
val time = pr.run(7919, true)
|
||||
println(time)
|
||||
|
||||
}
|
||||
}
|
||||
@ -1,46 +0,0 @@
|
||||
package com.nsrddyn.fpu
|
||||
|
||||
import scala.math._
|
||||
import scala.collection.immutable.ListSet
|
||||
import scala.collection.mutable.ArrayBuffer
|
||||
|
||||
class CholeskyDecomposition {
|
||||
|
||||
/*
|
||||
* Floating point operation to stress the cpu
|
||||
* Calculate the number of KFLOPS / FLOPS
|
||||
* implementation of the Cholesky decomposition
|
||||
* More information on the Cholesky decomposition at:
|
||||
* https://en.wikipedia.org/wiki/Cholesky_decomposition
|
||||
*
|
||||
* Linpack uses the cholesky decomposition
|
||||
* https://www.netlib.org/linpack/
|
||||
*
|
||||
* https://www.geeksforgeeks.org/dsa/cholesky-decomposition-matrix-decomposition/
|
||||
*
|
||||
* The Cholesky decomposition maps matrix A into the product of A = L · LH where L is the lower triangular matrix and LH is the transposed,
|
||||
* complex conjugate or Hermitian, and therefore of upper triangular form (Fig. 13.6).
|
||||
* This is true because of the special case of A being a square, conjugate symmetric matrix.
|
||||
*/
|
||||
|
||||
def run(matrix: Vector[Vector[Int]]): Unit = {
|
||||
|
||||
val size: Int = matrix.size
|
||||
val lower: ArrayBuffer[ArrayBuffer[Int]] = ArrayBuffer[ArrayBuffer[Int]]()
|
||||
|
||||
for
|
||||
i <- 0 to size
|
||||
j <- 0 until i
|
||||
do
|
||||
if i == j then lower(i)(j) = getSquaredSummation(lower, i, j, matrix) else lower(j)(j) = getReversedSummation(lower, i, j, matrix)
|
||||
|
||||
}
|
||||
|
||||
private def getReversedSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
|
||||
math.sqrt(matrix(j)(j) - (0 until j).map { k => lower(i)(k) * lower(j)(k) }.sum).toInt
|
||||
}
|
||||
private def getSquaredSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
|
||||
((matrix(i)(j) - (0 until j).map { k => math.pow(lower(j)(k), 2)}.sum) / lower(j)(j)).toInt
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,6 +0,0 @@
|
||||
package com.nsrddyn.fpu
|
||||
|
||||
|
||||
class FPU {
|
||||
|
||||
}
|
||||
@ -1,5 +0,0 @@
|
||||
package com.nsrddyn.fpu
|
||||
|
||||
class Matrix {
|
||||
|
||||
}
|
||||
Loading…
Reference in New Issue
Block a user