mirror of
https://github.com/nasrlol/torque.git
synced 2025-11-27 23:09:21 +01:00
chore: file refactor, imported zio
next steps are running the threads multithreaded and measuring for errors
This commit is contained in:
parent
d6f99d058b
commit
5c90505fe7
@ -1,7 +1,6 @@
|
|||||||
scalaVersion := "3.7.4"
|
scalaVersion := "3.7.4"
|
||||||
version := "1.0"
|
version := "1.0"
|
||||||
name := "torque"
|
name := "torque"
|
||||||
organization := "com.nsrddyn"
|
|
||||||
|
|
||||||
libraryDependencies += "dev.zio" %% "zio" % "2.1.22"
|
libraryDependencies += "dev.zio" %% "zio" % "2.1.22"
|
||||||
libraryDependencies += "org.scalatest" %% "scalatest" % "3.2.19" % Test
|
libraryDependencies += "org.scalatest" %% "scalatest" % "3.2.19" % Test
|
||||||
|
|||||||
@ -11,18 +11,20 @@ enum Status:
|
|||||||
case FAIL
|
case FAIL
|
||||||
|
|
||||||
|
|
||||||
object Torque {
|
object Torque extends ZIOAppDefault {
|
||||||
|
|
||||||
println("hello world")
|
println("hello world")
|
||||||
|
|
||||||
@main def main(args: String*): Unit = {
|
@main def main(args: String*): Unit = { println("\u001b[2J\u001b[H")
|
||||||
// ANSI ESCAPE CODE: clear screen
|
|
||||||
println("\u001b[2J\u001b[H")
|
|
||||||
println("--- TORQUE STRESS TESTING UTILITY ---")
|
println("--- TORQUE STRESS TESTING UTILITY ---")
|
||||||
|
|
||||||
var tester: CholeskyDecompositionTest = new CholeskyDecompositionTest
|
var tester: CholeskyDecompositionTest = new CholeskyDecompositionTest
|
||||||
println(tester.test())
|
println(tester.test())
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
var p: Prime = new Prime
|
||||||
|
p.run()
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
138
src/Ops/Prime.scala
Normal file
138
src/Ops/Prime.scala
Normal file
@ -0,0 +1,138 @@
|
|||||||
|
package com.nsrddyn.ops
|
||||||
|
import com.nsrddyn.tools.Benchmark
|
||||||
|
import scala.util.hashing
|
||||||
|
import scala.util.hashing.MurmurHash3
|
||||||
|
import com.nsrddyn.Traits.*
|
||||||
|
import scala.math._
|
||||||
|
import scala.collection.immutable.ListSet
|
||||||
|
import scala.collection.mutable.ArrayBuffer
|
||||||
|
|
||||||
|
|
||||||
|
class Prime() {
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Calculate all primes up to limit
|
||||||
|
* This should stress the ALU in someway,
|
||||||
|
* doing this in a predictable manner,
|
||||||
|
* will hopefully keep the cpu pipeline busy
|
||||||
|
* and that way stress the branch predictor
|
||||||
|
*
|
||||||
|
* math.sqrt(n) => a prime number has 2 factors, one of the factors
|
||||||
|
* of the prime numbers has to be smaller then n
|
||||||
|
* after that we check if the number is whole number and thereby checking if its a prime
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* TODO: I did the countrary of what i wanted to accieve with the is prime function
|
||||||
|
* We want the function to be less optimized so that the CPU has more work == more stress
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
def isPrime(n: Int): Boolean = {
|
||||||
|
if n <= 1 then false
|
||||||
|
else !(2 to math.sqrt(n).toInt).exists(i => n % i == 0)
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
def run(n: Int, result: Boolean): Unit = {
|
||||||
|
|
||||||
|
for i <- 0 to n do if isPrime(i) == result then println("true") else println("false")
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class PrimeRunner {
|
||||||
|
|
||||||
|
|
||||||
|
def run(threads: Int): Unit = {
|
||||||
|
|
||||||
|
val pr = new Prime()
|
||||||
|
val br = new Benchmark()
|
||||||
|
|
||||||
|
/*
|
||||||
|
* test cases
|
||||||
|
*
|
||||||
|
* 7919 true
|
||||||
|
* 2147483647 false
|
||||||
|
*/
|
||||||
|
|
||||||
|
val time = pr.run(7919, true)
|
||||||
|
println(time)
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class Hash {
|
||||||
|
|
||||||
|
def run(word: String, loopSize: Int): Unit = {
|
||||||
|
|
||||||
|
/* TODO: implement ALU friendly, so high speed hashing
|
||||||
|
* to continuously loop over voor stressing
|
||||||
|
* ALU
|
||||||
|
*
|
||||||
|
* While looking for hashing algorithmes to implement I stumbled on:
|
||||||
|
* https://scala-lang.org/api/3.x/scala/util/hashing/MurmurHash3$.html
|
||||||
|
*
|
||||||
|
* which is an implemntation of **smasher** http://github.com/aappleby/smhasher
|
||||||
|
* the exact type of hashing algorithm I was looking for
|
||||||
|
*
|
||||||
|
* In the scala description they state: "This algorithm is designed to generate
|
||||||
|
* well-distributed non-cryptographic hashes. It is designed to hash data in 32 bit chunks (ints). "
|
||||||
|
*
|
||||||
|
* (ints) -> ALU
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
for i <- 0 to loopSize do MurmurHash3.stringHash(word)
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
class CholeskyDecomposition {
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Floating point operation to stress the cpu
|
||||||
|
* Calculate the number of KFLOPS / FLOPS
|
||||||
|
* implementation of the Cholesky decomposition
|
||||||
|
* More information on the Cholesky decomposition at:
|
||||||
|
* https://en.wikipedia.org/wiki/Cholesky_decomposition
|
||||||
|
*
|
||||||
|
* Linpack uses the cholesky decomposition
|
||||||
|
* https://www.netlib.org/linpack/
|
||||||
|
*
|
||||||
|
* https://www.geeksforgeeks.org/dsa/cholesky-decomposition-matrix-decomposition/
|
||||||
|
*
|
||||||
|
* The Cholesky decomposition maps matrix A into the product of A = L · LH where L is the lower triangular matrix and LH is the transposed,
|
||||||
|
* complex conjugate or Hermitian, and therefore of upper triangular form (Fig. 13.6).
|
||||||
|
* This is true because of the special case of A being a square, conjugate symmetric matrix.
|
||||||
|
*/
|
||||||
|
|
||||||
|
def run(matrix: Vector[Vector[Int]]): Unit = {
|
||||||
|
|
||||||
|
val size: Int = matrix.size
|
||||||
|
val lower: ArrayBuffer[ArrayBuffer[Int]] = ArrayBuffer[ArrayBuffer[Int]]()
|
||||||
|
|
||||||
|
for
|
||||||
|
i <- 0 to size
|
||||||
|
j <- 0 until i
|
||||||
|
do
|
||||||
|
if i == j then lower(i)(j) = getSquaredSummation(lower, i, j, matrix) else lower(j)(j) = getReversedSummation(lower, i, j, matrix)
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getReversedSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
|
||||||
|
math.sqrt(matrix(j)(j) - (0 until j).map { k => lower(i)(k) * lower(j)(k) }.sum).toInt
|
||||||
|
}
|
||||||
|
private def getSquaredSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
|
||||||
|
((matrix(i)(j) - (0 until j).map { k => math.pow(lower(j)(k), 2)}.sum) / lower(j)(j)).toInt
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
@ -2,8 +2,17 @@ package com.nsrddyn.Tests
|
|||||||
|
|
||||||
import com.nsrddyn.fpu.CholeskyDecomposition
|
import com.nsrddyn.fpu.CholeskyDecomposition
|
||||||
import scala.collection.immutable.ListSet
|
import scala.collection.immutable.ListSet
|
||||||
|
import zio._
|
||||||
|
|
||||||
class CholeskyDecompositionTest extends CholeskyDecomposition {
|
class TestsRunner extends ZIOAppDefault {
|
||||||
|
|
||||||
|
def run =
|
||||||
|
println("Hello world")
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
class CholeskyDecompositionTest {
|
||||||
|
|
||||||
def test(): Unit = {
|
def test(): Unit = {
|
||||||
|
|
||||||
@ -1,7 +1,5 @@
|
|||||||
package com.nsrddyn.Traits
|
package com.nsrddyn.Traits
|
||||||
|
|
||||||
import zio._
|
|
||||||
|
|
||||||
trait Workload {
|
trait Workload {
|
||||||
|
|
||||||
def name: String
|
def name: String
|
||||||
@ -1,31 +0,0 @@
|
|||||||
package com.nsrddyn.alu
|
|
||||||
|
|
||||||
import scala.util.hashing
|
|
||||||
|
|
||||||
class Hash {
|
|
||||||
|
|
||||||
import scala.util.hashing.MurmurHash3
|
|
||||||
|
|
||||||
def run(word: String, loopSize: Int): Unit = {
|
|
||||||
|
|
||||||
/* TODO: implement ALU friendly, so high speed hashing
|
|
||||||
* to continuously loop over voor stressing
|
|
||||||
* ALU
|
|
||||||
*
|
|
||||||
* While looking for hashing algorithmes to implement I stumbled on:
|
|
||||||
* https://scala-lang.org/api/3.x/scala/util/hashing/MurmurHash3$.html
|
|
||||||
*
|
|
||||||
* which is an implemntation of **smasher** http://github.com/aappleby/smhasher
|
|
||||||
* the exact type of hashing algorithm I was looking for
|
|
||||||
*
|
|
||||||
* In the scala description they state: "This algorithm is designed to generate
|
|
||||||
* well-distributed non-cryptographic hashes. It is designed to hash data in 32 bit chunks (ints). "
|
|
||||||
*
|
|
||||||
* (ints) -> ALU
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
|
|
||||||
for i <- 0 to loopSize do MurmurHash3.stringHash(word)
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@ -1,64 +0,0 @@
|
|||||||
package com.nsrddyn.alu
|
|
||||||
import com.nsrddyn.alu.Prime
|
|
||||||
import com.nsrddyn.tools.Benchmark
|
|
||||||
import com.nsrddyn.test
|
|
||||||
|
|
||||||
class Prime() extends {
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Calculate all primes up to limit
|
|
||||||
* This should stress the ALU in someway,
|
|
||||||
* doing this in a predictable manner,
|
|
||||||
* will hopefully keep the cpu pipeline busy
|
|
||||||
* and that way stress the branch predictor
|
|
||||||
*
|
|
||||||
* math.sqrt(n) => a prime number has 2 factors, one of the factors
|
|
||||||
* of the prime numbers has to be smaller then n
|
|
||||||
* after that we check if the number is whole number and thereby checking if its a prime
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
|
|
||||||
|
|
||||||
/*
|
|
||||||
* TODO: I did the countrary of what i wanted to accieve with the is prime function
|
|
||||||
* We want the function to be less optimized so that the CPU has more work == more stress
|
|
||||||
*/
|
|
||||||
|
|
||||||
|
|
||||||
def isPrime(n: Int): Boolean = {
|
|
||||||
if n <= 1 then false
|
|
||||||
else !(2 to math.sqrt(n).toInt).exists(i => n % i == 0)
|
|
||||||
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
def run(n: Int, result: Boolean): Unit = {
|
|
||||||
|
|
||||||
for i <- 0 to n do if isPrime(i) == result then println("true") else println("false")
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class PrimeRunner extends Workload {
|
|
||||||
|
|
||||||
def run(threads: Int): Unit = {
|
|
||||||
|
|
||||||
val pr = new Prime()
|
|
||||||
val br = new Benchmark()
|
|
||||||
|
|
||||||
/*
|
|
||||||
* test cases
|
|
||||||
*
|
|
||||||
* 7919 true
|
|
||||||
* 2147483647 false
|
|
||||||
*/
|
|
||||||
|
|
||||||
val time = pr.run(7919, true)
|
|
||||||
println(time)
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@ -1,46 +0,0 @@
|
|||||||
package com.nsrddyn.fpu
|
|
||||||
|
|
||||||
import scala.math._
|
|
||||||
import scala.collection.immutable.ListSet
|
|
||||||
import scala.collection.mutable.ArrayBuffer
|
|
||||||
|
|
||||||
class CholeskyDecomposition {
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Floating point operation to stress the cpu
|
|
||||||
* Calculate the number of KFLOPS / FLOPS
|
|
||||||
* implementation of the Cholesky decomposition
|
|
||||||
* More information on the Cholesky decomposition at:
|
|
||||||
* https://en.wikipedia.org/wiki/Cholesky_decomposition
|
|
||||||
*
|
|
||||||
* Linpack uses the cholesky decomposition
|
|
||||||
* https://www.netlib.org/linpack/
|
|
||||||
*
|
|
||||||
* https://www.geeksforgeeks.org/dsa/cholesky-decomposition-matrix-decomposition/
|
|
||||||
*
|
|
||||||
* The Cholesky decomposition maps matrix A into the product of A = L · LH where L is the lower triangular matrix and LH is the transposed,
|
|
||||||
* complex conjugate or Hermitian, and therefore of upper triangular form (Fig. 13.6).
|
|
||||||
* This is true because of the special case of A being a square, conjugate symmetric matrix.
|
|
||||||
*/
|
|
||||||
|
|
||||||
def run(matrix: Vector[Vector[Int]]): Unit = {
|
|
||||||
|
|
||||||
val size: Int = matrix.size
|
|
||||||
val lower: ArrayBuffer[ArrayBuffer[Int]] = ArrayBuffer[ArrayBuffer[Int]]()
|
|
||||||
|
|
||||||
for
|
|
||||||
i <- 0 to size
|
|
||||||
j <- 0 until i
|
|
||||||
do
|
|
||||||
if i == j then lower(i)(j) = getSquaredSummation(lower, i, j, matrix) else lower(j)(j) = getReversedSummation(lower, i, j, matrix)
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
private def getReversedSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
|
|
||||||
math.sqrt(matrix(j)(j) - (0 until j).map { k => lower(i)(k) * lower(j)(k) }.sum).toInt
|
|
||||||
}
|
|
||||||
private def getSquaredSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
|
|
||||||
((matrix(i)(j) - (0 until j).map { k => math.pow(lower(j)(k), 2)}.sum) / lower(j)(j)).toInt
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
@ -1,6 +0,0 @@
|
|||||||
package com.nsrddyn.fpu
|
|
||||||
|
|
||||||
|
|
||||||
class FPU {
|
|
||||||
|
|
||||||
}
|
|
||||||
@ -1,5 +0,0 @@
|
|||||||
package com.nsrddyn.fpu
|
|
||||||
|
|
||||||
class Matrix {
|
|
||||||
|
|
||||||
}
|
|
||||||
Loading…
Reference in New Issue
Block a user