chore: file refactor, imported zio

next steps are running the threads multithreaded  and measuring for
errors
This commit is contained in:
Abdellah El Morabit 2025-11-26 23:11:25 +01:00
parent d6f99d058b
commit 5c90505fe7
12 changed files with 154 additions and 160 deletions

View File

@ -1,7 +1,6 @@
scalaVersion := "3.7.4"
version := "1.0"
name := "torque"
organization := "com.nsrddyn"
libraryDependencies += "dev.zio" %% "zio" % "2.1.22"
libraryDependencies += "org.scalatest" %% "scalatest" % "3.2.19" % Test

View File

@ -11,18 +11,20 @@ enum Status:
case FAIL
object Torque {
object Torque extends ZIOAppDefault {
println("hello world")
@main def main(args: String*): Unit = {
// ANSI ESCAPE CODE: clear screen
println("\u001b[2J\u001b[H")
@main def main(args: String*): Unit = { println("\u001b[2J\u001b[H")
println("--- TORQUE STRESS TESTING UTILITY ---")
var tester: CholeskyDecompositionTest = new CholeskyDecompositionTest
println(tester.test())
}
var p: Prime = new Prime
p.run()
}

138
src/Ops/Prime.scala Normal file
View File

@ -0,0 +1,138 @@
package com.nsrddyn.ops
import com.nsrddyn.tools.Benchmark
import scala.util.hashing
import scala.util.hashing.MurmurHash3
import com.nsrddyn.Traits.*
import scala.math._
import scala.collection.immutable.ListSet
import scala.collection.mutable.ArrayBuffer
class Prime() {
/*
* Calculate all primes up to limit
* This should stress the ALU in someway,
* doing this in a predictable manner,
* will hopefully keep the cpu pipeline busy
* and that way stress the branch predictor
*
* math.sqrt(n) => a prime number has 2 factors, one of the factors
* of the prime numbers has to be smaller then n
* after that we check if the number is whole number and thereby checking if its a prime
*
*/
/*
* TODO: I did the countrary of what i wanted to accieve with the is prime function
* We want the function to be less optimized so that the CPU has more work == more stress
*/
def isPrime(n: Int): Boolean = {
if n <= 1 then false
else !(2 to math.sqrt(n).toInt).exists(i => n % i == 0)
}
def run(n: Int, result: Boolean): Unit = {
for i <- 0 to n do if isPrime(i) == result then println("true") else println("false")
}
}
class PrimeRunner {
def run(threads: Int): Unit = {
val pr = new Prime()
val br = new Benchmark()
/*
* test cases
*
* 7919 true
* 2147483647 false
*/
val time = pr.run(7919, true)
println(time)
}
}
class Hash {
def run(word: String, loopSize: Int): Unit = {
/* TODO: implement ALU friendly, so high speed hashing
* to continuously loop over voor stressing
* ALU
*
* While looking for hashing algorithmes to implement I stumbled on:
* https://scala-lang.org/api/3.x/scala/util/hashing/MurmurHash3$.html
*
* which is an implemntation of **smasher** http://github.com/aappleby/smhasher
* the exact type of hashing algorithm I was looking for
*
* In the scala description they state: "This algorithm is designed to generate
* well-distributed non-cryptographic hashes. It is designed to hash data in 32 bit chunks (ints). "
*
* (ints) -> ALU
*
*/
for i <- 0 to loopSize do MurmurHash3.stringHash(word)
}
}
class CholeskyDecomposition {
/*
* Floating point operation to stress the cpu
* Calculate the number of KFLOPS / FLOPS
* implementation of the Cholesky decomposition
* More information on the Cholesky decomposition at:
* https://en.wikipedia.org/wiki/Cholesky_decomposition
*
* Linpack uses the cholesky decomposition
* https://www.netlib.org/linpack/
*
* https://www.geeksforgeeks.org/dsa/cholesky-decomposition-matrix-decomposition/
*
* The Cholesky decomposition maps matrix A into the product of A = L · LH where L is the lower triangular matrix and LH is the transposed,
* complex conjugate or Hermitian, and therefore of upper triangular form (Fig. 13.6).
* This is true because of the special case of A being a square, conjugate symmetric matrix.
*/
def run(matrix: Vector[Vector[Int]]): Unit = {
val size: Int = matrix.size
val lower: ArrayBuffer[ArrayBuffer[Int]] = ArrayBuffer[ArrayBuffer[Int]]()
for
i <- 0 to size
j <- 0 until i
do
if i == j then lower(i)(j) = getSquaredSummation(lower, i, j, matrix) else lower(j)(j) = getReversedSummation(lower, i, j, matrix)
}
private def getReversedSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
math.sqrt(matrix(j)(j) - (0 until j).map { k => lower(i)(k) * lower(j)(k) }.sum).toInt
}
private def getSquaredSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
((matrix(i)(j) - (0 until j).map { k => math.pow(lower(j)(k), 2)}.sum) / lower(j)(j)).toInt
}
}

View File

@ -2,8 +2,17 @@ package com.nsrddyn.Tests
import com.nsrddyn.fpu.CholeskyDecomposition
import scala.collection.immutable.ListSet
import zio._
class CholeskyDecompositionTest extends CholeskyDecomposition {
class TestsRunner extends ZIOAppDefault {
def run =
println("Hello world")
}
class CholeskyDecompositionTest {
def test(): Unit = {

View File

@ -1,7 +1,5 @@
package com.nsrddyn.Traits
import zio._
trait Workload {
def name: String

View File

@ -1,31 +0,0 @@
package com.nsrddyn.alu
import scala.util.hashing
class Hash {
import scala.util.hashing.MurmurHash3
def run(word: String, loopSize: Int): Unit = {
/* TODO: implement ALU friendly, so high speed hashing
* to continuously loop over voor stressing
* ALU
*
* While looking for hashing algorithmes to implement I stumbled on:
* https://scala-lang.org/api/3.x/scala/util/hashing/MurmurHash3$.html
*
* which is an implemntation of **smasher** http://github.com/aappleby/smhasher
* the exact type of hashing algorithm I was looking for
*
* In the scala description they state: "This algorithm is designed to generate
* well-distributed non-cryptographic hashes. It is designed to hash data in 32 bit chunks (ints). "
*
* (ints) -> ALU
*
*/
for i <- 0 to loopSize do MurmurHash3.stringHash(word)
}
}

View File

@ -1,64 +0,0 @@
package com.nsrddyn.alu
import com.nsrddyn.alu.Prime
import com.nsrddyn.tools.Benchmark
import com.nsrddyn.test
class Prime() extends {
/*
* Calculate all primes up to limit
* This should stress the ALU in someway,
* doing this in a predictable manner,
* will hopefully keep the cpu pipeline busy
* and that way stress the branch predictor
*
* math.sqrt(n) => a prime number has 2 factors, one of the factors
* of the prime numbers has to be smaller then n
* after that we check if the number is whole number and thereby checking if its a prime
*
*/
/*
* TODO: I did the countrary of what i wanted to accieve with the is prime function
* We want the function to be less optimized so that the CPU has more work == more stress
*/
def isPrime(n: Int): Boolean = {
if n <= 1 then false
else !(2 to math.sqrt(n).toInt).exists(i => n % i == 0)
}
def run(n: Int, result: Boolean): Unit = {
for i <- 0 to n do if isPrime(i) == result then println("true") else println("false")
}
}
class PrimeRunner extends Workload {
def run(threads: Int): Unit = {
val pr = new Prime()
val br = new Benchmark()
/*
* test cases
*
* 7919 true
* 2147483647 false
*/
val time = pr.run(7919, true)
println(time)
}
}

View File

@ -1,46 +0,0 @@
package com.nsrddyn.fpu
import scala.math._
import scala.collection.immutable.ListSet
import scala.collection.mutable.ArrayBuffer
class CholeskyDecomposition {
/*
* Floating point operation to stress the cpu
* Calculate the number of KFLOPS / FLOPS
* implementation of the Cholesky decomposition
* More information on the Cholesky decomposition at:
* https://en.wikipedia.org/wiki/Cholesky_decomposition
*
* Linpack uses the cholesky decomposition
* https://www.netlib.org/linpack/
*
* https://www.geeksforgeeks.org/dsa/cholesky-decomposition-matrix-decomposition/
*
* The Cholesky decomposition maps matrix A into the product of A = L · LH where L is the lower triangular matrix and LH is the transposed,
* complex conjugate or Hermitian, and therefore of upper triangular form (Fig. 13.6).
* This is true because of the special case of A being a square, conjugate symmetric matrix.
*/
def run(matrix: Vector[Vector[Int]]): Unit = {
val size: Int = matrix.size
val lower: ArrayBuffer[ArrayBuffer[Int]] = ArrayBuffer[ArrayBuffer[Int]]()
for
i <- 0 to size
j <- 0 until i
do
if i == j then lower(i)(j) = getSquaredSummation(lower, i, j, matrix) else lower(j)(j) = getReversedSummation(lower, i, j, matrix)
}
private def getReversedSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
math.sqrt(matrix(j)(j) - (0 until j).map { k => lower(i)(k) * lower(j)(k) }.sum).toInt
}
private def getSquaredSummation(lower: ArrayBuffer[ArrayBuffer[Int]], i: Int, j: Int, matrix: Vector[Vector[Int]]) = {
((matrix(i)(j) - (0 until j).map { k => math.pow(lower(j)(k), 2)}.sum) / lower(j)(j)).toInt
}
}

View File

@ -1,6 +0,0 @@
package com.nsrddyn.fpu
class FPU {
}

View File

@ -1,5 +0,0 @@
package com.nsrddyn.fpu
class Matrix {
}